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Abstract

The fluctuating bed shear stress has largely been investigated only for uniform channel flows and boundary layers. In practical
engineering, the flow conditions are often modified due to the presence of various hydraulic structures. To what extent the mod-
ification affects the known characteristics of the bed shear stress is not clear. This study presents experimental results of the bed shear
stress fluctuations, which are obviously subjected to external turbulence generated by superimposing artificial structures in the open
channel flows. The statistical analysis of the measurements shows that the probability density function of the bed shear stress can be
described by the lognormal function. Some associated relations concerning higher-order moments, skewness and kurtosis, which are
derived from the lognormal function, are further compared with the experimental data. Physical implication of the skewed prob-

ability density distribution is finally discussed.
© 2003 Elsevier Inc. All rights reserved.
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1. Introduction

Bedload transport comprises a series of random
events associated with motion of bed sediment particles.
In describing the motion of the particles in the proba-
bilistic approach, evaluations of probability density
functions of the hydrodynamic forces exerted on the
particles are essential for conducting relevant analyses.
Due to the complexity of the flow around the bed par-
ticles, limited information is available on stochastic
characteristics of the hydrodynamic forces. This leads to
the Gaussian function having often been assumed for
many different situations in the previous studies. For
example, Einstein and El-Samni (1949) reported that the
instantaneous lift force was distributed in the Gaussian
fashion. Their result was based on the experiments
conducted with a rough bed comprised of hemispheres.
The lift force exerted on the hemisphere was simply
measured as the pressure difference between the top and
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bottom of the roughness element. Alternatively, Paintal
(1971) applied the Gaussian function to depict the
probability density distribution of the dimensionless bed
shear stress or Shields number, which is one of the
principal parameters included in various formulations
related to sediment transport. As the lift force can be
expressed in terms of the near-bed velocity, the proba-
bility density distribution of the lift force can be derived
from that of the near-bed velocity. Cheng and Chiew
(1998) performed such a derivation by assuming that the
near-bed streamwise velocity was distributed according
to the Gaussian function, which leads to an improved
pickup probability of sediment entrainment.

The common use of the Gaussian function is also due
to its simplicity and good approximation in fitting ex-
perimental data related to the near-bed flow conditions
for some cases. However, it should be noted that the
Gaussian function does not hold for all cases. In com-
menting the Einstein’s bedload function, Yalin (1977)
stated that the lift force might distribute differently
for different bed conditions and its probability den-
sity function may be non-Gaussian in the transi-
tional regime, only tending to be normal in the case of
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Nomenclature

e clearance from the lower edge of turbulence
generators

I, (= Trms/Tmean) relative intensity

K coefficient of kurtosis

(In7),,,, time-averaged value of the logarithm of the

bed shear stress

(In7),, rms value of the logarithm of the bed shear

rms

stress
(0] flow discharge
S coefficient of skewness

Vv section-averaged velocity

X distance from turbulence generators to the
test section

T instantaneous bed shear stress

Tmean  time-averaged mean bed shear stress

Tn (= 7/Tmean) normalised bed shear stress

(Tn)mean time-averaged value of the normalised bed
shear stress

(Tn),ms rms value of the normalised bed shear stress

Trms rms value of the bed shear stress

hydrodynamically rough beds. On the other hand, as the
lift force is proportional to the square of the near-bed
velocity, the probability density functions of the lift force
should be non-Gaussian if a near-bed velocity is as-
sumed normally distributed. Obviously, further investi-
gations need to be done to clarify different probability
density functions associated with the hydrodynamic
forces for various situations. However, it is extremely
difficult to perform systematic measurements of the drag
and lift forces exerted on the randomly positioned bed
particles (e.g., Watters and Rao, 1971; Patnaik et al.,
1992; Mollinger and Nieuwstadt, 1996).

Alternatively, the bed shear stress can serve as an-
other important parameter in characterising the flow
effect on the motion of the bed particles. It has often
been included in many formulations of sediment trans-
port, for example, those related to the critical condition
for the initiation of sediment motion and bedload
transport rates. Unfortunately, only time-averaged bed
shear stress can be measured so far in the presence of the
bed particles or rough beds. This is in marked contrast
to the fact that much information is available in the
literature for the shear stress on a smooth boundary,
which enables the measurement of the bed shear stress
using the current techniques such as hotfilm, hot-wire,
and LDA and its variants. Extensive studies have been
done in uniform channel flows and boundary layers by
Eckelmann (1974), Blinco and Simons (1974), Girgis
(1977), Wietrzak and Lueptow (1994), Colella and Keith
(1997), Chew et al. (1998), Miyagi et al. (2000), among
others. The measurements conducted in these studies
show that the distribution of the bed shear stress is al-
ways skewed. Cheng and Law (2003) reported that the
probability density distribution derived from the ex-
perimental data could be represented well by the log-
normal function, rather than the widely used Gaussian
function. However, the experimental data collected in
the previous studies are usually limited to the simple
situations such as uniform open channel flows (e.g.,
Blinco and Simons, 1974) and boundary layers (e.g., Obi
et al., 1996).

It is not clear how the skewed distribution changes
and whether the lognormal function is still applicable if
the simple flow configurations are altered, for example,
in the presence of hydraulic structures in practical en-
gineering. In this study, open channel flows are altered
deliberately by introducing external turbulence, which
therefore leads to significant modifications to the bed
shear stress. With the measured shear stresses, the
probability density function and higher-order moments
are computed and then compared to theoretical rela-
tionships that are derived from the lognormal function.
The data used in this study has been obtained in a test
program, of which the main purpose was to study the
effect of externally generated turbulence on sediment
transport. The results of the latter study have been re-
ported in Sumer et al. (2003).

2. Experiments

The experiments were conducted with a tilting flume
that was 10 m long and 0.3 m wide at the Technical
University of Denmark, MEK, Coastal and River En-
gineering Section (formerly Department of Hydrody-
namics and Water Resources, ISVA). The test section
was chosen at 5.6 m from the entrance of the flume.
Water was circulated by a pump and the flow rate was
controlled with a frequency inverter and monitored
using an electromagnetic flow meter. The bed shear
stress was measured using a 1-D Dantec hotfilm probe
(55R46), which was 0.75 mm long in the transverse di-
rection and 0.2 mm wide in the streamwise direction
(Sumer et al., 1993). The probe was mounted flush with
the rigid bottom of the flume in the middle of the test
section. The calibration was done in situ by first cover-
ing the probe with a three-sided calibration channel that
was 1 mm deep, 30 mm wide and 180 mm long. Then,
the water was pumped through the calibration channel.
Because of the small depth, the flow so induced was
laminar and thus the bed shear stress could be theoret-
ically computed from the flow discharge. The computed
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stress was then related to the hotfilm measurement for
the calibration purpose. For each test, the calibration
was done twice, one before the test and the other after.

For all the tests, a hydraulically smooth bed was
prepared and the water depth at the test section was
maintained at 20 cm. The flow rate for each test was so
chosen that the time-averaged bed shear stress remained
almost constant but the bed shear stress fluctuations
varied for different cases. The section-averaged flow
velocity varied from 7.0 to 31.2 cm/s, as shown in Table
1. For the undisturbed open channel flow as defined
subsequently, the average velocity was 30.7 cm/s and the
Reynolds number 26,290.

To have different flow configurations, which affected
the bed shear stress fluctuations in the test sections sig-
nificantly, three turbulence generators were employed to
produce external disturbances in the flow. They were a
pipe, a short series of grids (referred to as short-grid),
and a long series of grids (referred to as long-grid). Both

pipe and grid were considered to be typical structures
for shedding eddies. Such eddies, when moving down-
stream, would serve as external turbulence with various
scales to affect the bed shear stress measured by the
hotfilm probe. Different arrangements were made for the
three generators, as shown in Figs. 1-3, respectively.
Altogether four series of experiments were conducted in
this study.

Series 1: Undisturbed flow. The purpose of this series
of experiments was to provide data for the flows without
the turbulence generators for comparisons with the
other cases. For this case, the velocity profiles were
measured using a 1-D laser-Doppler anemometer (LDA)
manufactured by Dantec, which was operated in for-
ward scatter mode. The measured velocity profile for the
undisturbed flow compares well with the van Driest
(1956) function and also the logarithmic law for the
large distance from the bed. However, the bed shear
stress obtained by fitting the limited velocity data to the

Table 1

Summary of experimental data
Run 0 (I/s) V (cm/s) x (or e) (cm) Tmean/p (cm?/s?) Trms/ Tmean (INTh) pean (In ) s
(i) Pipe case
n2511 11.1 18.49 0 3.002 0.212 —-0.022 0.209
n2504 18.7 31.23 10 3.025 1.015 —-0.500 1.072
n2614 16.0 26.66 15 2.998 0.802 —-0.328 0.879
n2402 15.0 24.94 20 3.054 0.660 -0.199 0.649
n2110 15.3 25.51 30 3.023 0.637 -0.173 0.589
n2602 15.1 25.23 40 3.031 0.591 -0.159 0.575
n2604 16.0 26.66 50 2.969 0.592 —-0.154 0.562
n2606 17.4 28.94 60 3.038 0.589 —-0.155 0.562
n2608 18.0 30.08 70 3.004 0.541 —-0.126 0.501
n2609 18.5 30.77 80 2.963 0.560 —-0.131 0.508
(ii) Short-grid case
n2105 5.7 9.52 0 3.008 0.481 —-0.105 0.463
n2103 5.6 9.41 10 3.039 0.491 -0.119 0.505
n2102 5.5 9.24 20 2.994 0.478 -0.107 0.469
00708 6.1 10.09 30 2.990 0.460 —-0.105 0.471
n2009 6.4 10.66 40 2.961 0.487 —-0.114 0.438
00301 6.1 10.09 50 2.988 0.473 —-0.109 0.477
00304 6.6 10.95 60 3.023 0.527 —-0.134 0.532
00701 7.8 12.95 70 3.038 0.528 —-0.135 0.534
n2006 9.0 14.95 80 2.969 0.553 -0.152 0.576
n2706 10.1 16.80 90 2.981 0.573 —-0.162 0.593
n2708 11.7 19.52 110 2.971 0.571 —-0.156 0.577
n2710 13.9 23.23 135 2.975 0.560 —-0.154 0.573
n2802 15.1 25.23 168 2.989 0.549 —-0.139 0.537
(iii) Long-grid case
n2002 4.2 7.00 2 2.985 0.354 —-0.062 0.359
n1903 5.0 8.33 4 3.069 0.442 —-0.100 0.463
00803 6.2 10.33 6 3.036 0.492 —-0.115 0.490
00804 7.4 12.33 8 3.077 0.519 —-0.126 0.513
01509 8.5 14.17 10 3.000 0.542 —-0.139 0.545
01303 10.0 16.66 12 3.037 0.511 —-0.122 0.504
01305 11.5 19.23 14 3.016 0.484 —-0.108 0.466
01502 12.6 20.94 16 2.997 0.455 —-0.098 0.445
01506 15.1 25.23 18 2.964 0.466 —-0.099 0.445
$3001 18.4 30.67 20 3.025 0.442 —-0.090 0.424
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Fig. 3. Definition sketch for long-grid case.

log-law is lower than the hotfilm measurement by ap-
proximately 5-10%.

Series 2. Pipe case. For this series, a 30 cm long pipe
with a diameter of 6.3 cm was horizontally installed
between the side walls of the flume, as shown in Fig. 1.
The spacing of the pipe above the bed remained at 6 cm.
The longitudinal distance from the section where the
pipe located to the test section varied from 0 to 80 cm.

Series 3: Short-grid case. Fig. 2 shows the short-grid,
95 cm long, 29 cm wide and 21 cm high, which was
positioned at 6 cm above the bed. The short-grid con-
sisted of 19 pieces of stainless steel perforated plates,
which were spaced out 5 cm apart. Each plate was 2 mm

thick, having uniformly-distributed square holes (9.5
mm X 9.5 mm). The average porosity for each plate was
69%. The distance from the downstream end of the grid
to the test section varied from 0 to 170 cm.

Series 4: Long-grid case. It comprised 10 sections of
short-grids, covering the flume in the whole length, as
shown in Fig. 3. The clearance between the bed of the
flume and the lower edge of the grid ranged from 2 to 20
cm.

It is noted that the four series of experiments con-
ducted in this study were all limited to unidirectional
flows, and therefore do not represent other bed shear
stress problems.

3. Data analysis

A summary of the experimental results for all the
tests is given in Table 1, where the subscripts rms and
mean denote the root-mean-square and time-mean val-
ues of random variables, respectively; the ratio of 7.y to
Tmean 18 Teferred to as the relative intensity of the bed
shear stress; 7, is the normalised stress defined as
7/Tmean> and p is the density of the fluid.

3.1. Variations of shear stress fluctuations

Figs. 4-6 show variations of the bed shear stress
fluctuations for the three cases, respectively. Large
variations are found for the pipe case, where the relative
intensity of the shear stress, Tims/Tmean, varies from 0.21
to 1.02. In comparison, the relative intensity is 0.44 for
the undisturbed flow, and varies from 0.46 to 0.57 for
the long-grid case and from 0.35 to 0.54 for the short-
grid case. The difference of the measured fluctuations
would reflect the variations in the scale of the generated
turbulence. In the near field downstream of the struc-
ture, the turbulence scale should be closely related to the

16 | | | | | | |
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Fig. 4. Variations of relative intensity of bed shear stress, and mean
and rms values of In(z,) for pipe case.
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Fig. 6. Variations of relative intensity of bed shear stress, and mean
and rms values of In(t,) for long-grid case.

dimension of the structure. For the pipe case, the
shedding eddies would be larger in size because the pipe
diameter is 63 mm, which is much larger than the bar
size (2 mm) of the grids. This further implies that the
observed stress fluctuation that is more substantial in
the presence of the pipe, in particular, when the pipe is
not far away from the test section.

In addition, it is noted that the measured relative
intensity for the undisturbed flow is slightly higher than
the range reported previously, the latter being 0.35-0.40
(e.g., Alfredsson et al.,, 1988; Naqwi and Reynolds,
1991). No clear explanation for this difference can be
made at this stage.

3.2. Probability density distribution
For a unidirectional flow over a hydraulically smooth

bed, two basic characteristics of the bed shear stress can
be observed from the experiment results. First, the bed

shear stress is always positive, implying that no flow
reversals occur very near the bed. Second, the distribu-
tion of the fluctuating bed shear stress is positively
skewed. Cheng and Law (2003) have shown that the
skewed distribution can be reproduced with the two-
parameter lognormal function, which agrees well with
the measured results for the uniform channel flows and
boundary layers.

With the lognormal function, the probability density
function of the bed shear stress 7 can be expressed as

1 1 /lnt— (11’1 T)mean ’
\/ﬁ(ln T)rmst exp { - 5 < (ln T)rms > }

fort >0
0 fort<0

fo) =

(1)
= mean value of the random variable
Int and (Int)__ = rms value of Int. The two parame-
ters, (Int),.,, and (Int)_ . indicate the statistical
characteristics of the logarithm of the bed shear stress.
Their variations for the three cases of the experiments
are shown in Figs. 4-6. It is interesting to note that the
two parameters vary in the similar fashion to that for the
stress fluctuation. In particular, the magnitude of
(In7),, is almost equal to the relative intensity of the
shear stress for all the cases, of which more discussions
are given subsequently.

Theoretically, (Int),.,, and (Int),, can be related to
Tmean and Tyms, as detailed in Appendix A. Such rela-
tionships can also be expressed in terms of the norma-
lised shear stress, T, = T/Tmean, as follows

where (In7),..,

rms

1 2
(ln Tﬂ)mean - 75 11’1 |:1 + (Tn)rms:| (2)
(11’1 Tn)rms = IIl |:1 + (Tl‘l)fms:| (3)
where (7n),,,s = Trms/Tmean = Telative intensity of the bed

shear stress denoted as I,. With Egs. (2) and (3), Eq. (1)
can be rewritten as

_ l (lnr,,4—lnw/1+112)2
21+ 1)1, 2In(1+12)

(4)
for 7, > 0. Eq. (4) indicates that the probability density
function of the normalised stress varies with the fluctu-
ating intensity.

Figs. 7-9 show comparisons of Eq. (4) with the ex-
perimental results for the cases of pipe, short-grid, and
long-grid, respectively. It can be seen that the measured
probability density functions generally agree well with the
lognormal function for various fluctuating intensities.

Figs. 10 and 11 show the relationship of the mean and
rms values of the normalised shear stress and those of its
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interesting to note that the measurements can largely be
represented by Eqgs. (2) and (3), respectively. However,
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for the pipe case, the experimental data seem to agree
better with the following approximate equations:

(0 %) = — 3 () 5
(ln T“)rms = (Tn)rms (6)

Egs. (5) and (6) are derived from Egs. (2) and (3) for
small stress fluctuations by considering the following
series expansions:

I (14 (20| = (@) = 0:25(20) s + Oll)i]  (7)

In |1+ ()] = (s = 0.25(50);s + Ol(T0)5
(®)

Obviously, if the terms including (z,)} . and higher or-

ders can be ignored, then Egs. (2) and (3) can be sim-
plified to Egs. (5) and (6), respectively.

3.3. High-order moments: skewness and kurtosis

The skewness S and kurtosis K are defined, respec-
tively, as
(‘C - Tmean)3

S= 15 9)

(T - Tmean)z

(T - Tmean)4
2
(T - Tmean)z]

where the overbars denote the time-average.

With the lognormal function, the above definitions of
the skewness and kurtosis can be further expressed in
terms of 7, (Crow and Shimizu, 1988):

K= (10)

S=1I+3I, (11)
K=1%+6I°+ 15I' + 1617 + 3 (12)

From Egs. (11) and (12), it can be seen that for small /-
values, the skewness is approximately equal to zero and
the kurtosis 3, implying that the distribution of the
fluctuating bed shear stress can be described using the
Gaussian function. Comparisons of Egs. (11) and (12)
with the experimental results are given in Figs. 12 and
13, respectively, showing general overestimates with
Egs. (11) and (12) despite the scatter of the measure-
ments. This may be partially due to the fact that the
high-order moments of the bed shear stress are usually
believed to be significantly subject to the heat loss for
the hot-element sensors or insufficient seeding particles

3.5 T T
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377 A Shortgrid
O Long grid
251 g g
— Eq. (11)
o}
5 o
%) gk o
15 Kié
7
1 /El =l
0.5
0
0 0.2 04 0.6 0.8 1 1.2
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Fig. 12. Relationship of skewness and relative intensity.
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very close to the bed for the LDA (Wietrzak and Lu-
eptow, 1994; Chew et al., 1998). On the other hand, it is
also noted that some significant deviations of the mea-
sured skewness and flatness from the predication exist
for the pipe case. In particular, the deviations are as-
sociated with the pipe which was only 10 and 15 c¢cm
upstream of the test section. Therefore, they may result
from the direct impact of the eddy shedding from the
pipe. Unfortunately, for this particular case, there are
only the two data points available from this study.
Therefore, further studies are needed so that detailed
examination can be made.

In addition, the relationship of S and K is plotted
with Egs. (11) and (12) in Fig. 14 together with the ex-
perimental data. Also superimposed in this figure is the
following simplified relationship:

K:19—6S2+3 (13)

13 - -
O Pipe /
12 77 A Short grid A
11 771 O Longgrid
—— Egs. (11) and (12 O 7 o
10 H gs. (11) and (12) X
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X 3
o
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S

Fig. 14. Relationship of skewness and kurtosis.

which is derived by ignoring the terms included in Egs.
(11) and (12) of which the orders are higher than O(1?).
Fig. 14 shows that the two theoretical curves are in good
agreement with the experimental results.

4. Discussion

From the experimental results obtained in this study,
it appears that the probability density distribution of the
bed shear stress becomes more skewed when the bed is
subjected to external larger-scale turbulence. This phe-
nomenon is evident for the pipe case, in particular, when
the pipe is in close proximity of the hotfilm probe or the
test section. This is largely because the eddy shed from
the pipe in size is of the order of the pipe diameter that is
63 mm. When the pipe is not far from the hotfilm probe,
the effect of the eddy shedding is expected more con-
siderable. In contrast, the size of the eddy generated by
the grid appears much smaller because the grid bar has a
dimension of 2 mm only.

Also demonstrated by the measurements is the fact
that the probability density distribution becomes less
skewed if the distance from the structure (pipe or grid)
to the channel bed at the test section increases. This is
because with the increasing distance, the large scale eddy
reduces in size when approaching the bed at the test
section.

On the other hand, it should be noted that the mea-
sured probability density distribution may also be sub-
jected to the performance of the hotfilm probe. As
mentioned earlier by Alfredsson et al. (1988), the heat
transfer from the probe to substrate may be insensitive
to rapid shear stress fluctuations because of the large
thermal inertia of the substrate. Therefore, the measured
probability density distribution may deviate from the
real distribution due to the difference between static and
dynamic responses of the hotfilm probe.

5. Conclusions

In this study, various external structures are super-
imposed in open channel flows to generate additional
turbulence. This causes that the bed shear stress fluctu-
ates markedly in comparison with those for the condi-
tion of uniform channel flows or boundary layers. The
shear stresses were measured with a 1-D hotfilm probe.
The statistical analysis of the measurements shows that
the probability density distribution of the fluctuating
stress can be described effectively using the lognormal
function. The skewness and kurtosis generally depend
on the relative intensity of the shear stress, and thus are
interrelated. The interrelationship that is derived from
the lognormal function agrees well with the experimen-
tal data.
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Appendix A. Derivation of Eq. (4)

In terms of the probability density function f(z),
Tmean Can be computed as

Tmean = / tf(t)dz (A.1)
and 7., can be defined according to

Tfms - / ‘sz(‘lf) dr — Trznean (Az)

Substituting Eq. (1) into Egs. (A.1) and (A.2), respec-
tively, yields

Tmean = €XP [(ln T) mean % (In r)fms] (A.3)
and

Toms = Tmean \/ exp [(In<),,| =1 (A4)
From Eq. (A.4), one gets

(Int),,  =/In(1+172) (A.3)

Then, substituting Eq. (A.5) into Eq. (A.3) yields

(Int), . =In [ —mean (A.6)

mean m

With Egs. (A.5) and (A.6), Eq. (1) can be rewritten as

2
1 (ln —~—+In m)

1= 2n(1+13)fexp - 2n(1+2)

(A.7)

for 7 > 0. In terms of the normalised stress, Egs. (A.5)—
(A.7) can be changed to Eqgs. (2)—(4), respectively.
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