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Abstract

The fluctuating bed shear stress has largely been investigated only for uniform channel flows and boundary layers. In practical

engineering, the flow conditions are often modified due to the presence of various hydraulic structures. To what extent the mod-

ification affects the known characteristics of the bed shear stress is not clear. This study presents experimental results of the bed shear

stress fluctuations, which are obviously subjected to external turbulence generated by superimposing artificial structures in the open

channel flows. The statistical analysis of the measurements shows that the probability density function of the bed shear stress can be

described by the lognormal function. Some associated relations concerning higher-order moments, skewness and kurtosis, which are

derived from the lognormal function, are further compared with the experimental data. Physical implication of the skewed prob-

ability density distribution is finally discussed.

� 2003 Elsevier Inc. All rights reserved.
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1. Introduction

Bedload transport comprises a series of random

events associated with motion of bed sediment particles.

In describing the motion of the particles in the proba-

bilistic approach, evaluations of probability density
functions of the hydrodynamic forces exerted on the

particles are essential for conducting relevant analyses.

Due to the complexity of the flow around the bed par-

ticles, limited information is available on stochastic

characteristics of the hydrodynamic forces. This leads to

the Gaussian function having often been assumed for

many different situations in the previous studies. For

example, Einstein and El-Samni (1949) reported that the
instantaneous lift force was distributed in the Gaussian

fashion. Their result was based on the experiments

conducted with a rough bed comprised of hemispheres.

The lift force exerted on the hemisphere was simply

measured as the pressure difference between the top and
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bottom of the roughness element. Alternatively, Paintal

(1971) applied the Gaussian function to depict the

probability density distribution of the dimensionless bed

shear stress or Shields number, which is one of the

principal parameters included in various formulations

related to sediment transport. As the lift force can be
expressed in terms of the near-bed velocity, the proba-

bility density distribution of the lift force can be derived

from that of the near-bed velocity. Cheng and Chiew

(1998) performed such a derivation by assuming that the

near-bed streamwise velocity was distributed according

to the Gaussian function, which leads to an improved

pickup probability of sediment entrainment.

The common use of the Gaussian function is also due
to its simplicity and good approximation in fitting ex-

perimental data related to the near-bed flow conditions

for some cases. However, it should be noted that the

Gaussian function does not hold for all cases. In com-

menting the Einstein�s bedload function, Yalin (1977)

stated that the lift force might distribute differently

for different bed conditions and its probability den-

sity function may be non-Gaussian in the transi-
tional regime, only tending to be normal in the case of
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Nomenclature

e clearance from the lower edge of turbulence

generators

Is ð¼ srms=smeanÞ relative intensity

K coefficient of kurtosis

ðln sÞmean time-averaged value of the logarithm of the

bed shear stress

ðln sÞrms rms value of the logarithm of the bed shear

stress
Q flow discharge

S coefficient of skewness

V section-averaged velocity

x distance from turbulence generators to the

test section

s instantaneous bed shear stress

smean time-averaged mean bed shear stress

sn ð¼ s=smeanÞ normalised bed shear stress

ðsnÞmean time-averaged value of the normalised bed

shear stress
ðsnÞrms rms value of the normalised bed shear stress

srms rms value of the bed shear stress
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hydrodynamically rough beds. On the other hand, as the

lift force is proportional to the square of the near-bed

velocity, the probability density functions of the lift force

should be non-Gaussian if a near-bed velocity is as-

sumed normally distributed. Obviously, further investi-

gations need to be done to clarify different probability

density functions associated with the hydrodynamic

forces for various situations. However, it is extremely
difficult to perform systematic measurements of the drag

and lift forces exerted on the randomly positioned bed

particles (e.g., Watters and Rao, 1971; Patnaik et al.,

1992; Mollinger and Nieuwstadt, 1996).

Alternatively, the bed shear stress can serve as an-

other important parameter in characterising the flow

effect on the motion of the bed particles. It has often

been included in many formulations of sediment trans-
port, for example, those related to the critical condition

for the initiation of sediment motion and bedload

transport rates. Unfortunately, only time-averaged bed

shear stress can be measured so far in the presence of the

bed particles or rough beds. This is in marked contrast

to the fact that much information is available in the

literature for the shear stress on a smooth boundary,

which enables the measurement of the bed shear stress
using the current techniques such as hotfilm, hot-wire,

and LDA and its variants. Extensive studies have been

done in uniform channel flows and boundary layers by

Eckelmann (1974), Blinco and Simons (1974), Girgis

(1977), Wietrzak and Lueptow (1994), Colella and Keith

(1997), Chew et al. (1998), Miyagi et al. (2000), among

others. The measurements conducted in these studies

show that the distribution of the bed shear stress is al-
ways skewed. Cheng and Law (2003) reported that the

probability density distribution derived from the ex-

perimental data could be represented well by the log-

normal function, rather than the widely used Gaussian

function. However, the experimental data collected in

the previous studies are usually limited to the simple

situations such as uniform open channel flows (e.g.,

Blinco and Simons, 1974) and boundary layers (e.g., Obi
et al., 1996).
It is not clear how the skewed distribution changes

and whether the lognormal function is still applicable if

the simple flow configurations are altered, for example,

in the presence of hydraulic structures in practical en-

gineering. In this study, open channel flows are altered

deliberately by introducing external turbulence, which

therefore leads to significant modifications to the bed

shear stress. With the measured shear stresses, the
probability density function and higher-order moments

are computed and then compared to theoretical rela-

tionships that are derived from the lognormal function.

The data used in this study has been obtained in a test

program, of which the main purpose was to study the

effect of externally generated turbulence on sediment

transport. The results of the latter study have been re-

ported in Sumer et al. (2003).
2. Experiments

The experiments were conducted with a tilting flume

that was 10 m long and 0.3 m wide at the Technical

University of Denmark, MEK, Coastal and River En-

gineering Section (formerly Department of Hydrody-
namics and Water Resources, ISVA). The test section

was chosen at 5.6 m from the entrance of the flume.

Water was circulated by a pump and the flow rate was

controlled with a frequency inverter and monitored

using an electromagnetic flow meter. The bed shear

stress was measured using a 1-D Dantec hotfilm probe

(55R46), which was 0.75 mm long in the transverse di-

rection and 0.2 mm wide in the streamwise direction
(Sumer et al., 1993). The probe was mounted flush with

the rigid bottom of the flume in the middle of the test

section. The calibration was done in situ by first cover-

ing the probe with a three-sided calibration channel that

was 1 mm deep, 30 mm wide and 180 mm long. Then,

the water was pumped through the calibration channel.

Because of the small depth, the flow so induced was

laminar and thus the bed shear stress could be theoret-
ically computed from the flow discharge. The computed
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stress was then related to the hotfilm measurement for

the calibration purpose. For each test, the calibration

was done twice, one before the test and the other after.

For all the tests, a hydraulically smooth bed was
prepared and the water depth at the test section was

maintained at 20 cm. The flow rate for each test was so

chosen that the time-averaged bed shear stress remained

almost constant but the bed shear stress fluctuations

varied for different cases. The section-averaged flow

velocity varied from 7.0 to 31.2 cm/s, as shown in Table

1. For the undisturbed open channel flow as defined

subsequently, the average velocity was 30.7 cm/s and the
Reynolds number 26,290.

To have different flow configurations, which affected

the bed shear stress fluctuations in the test sections sig-

nificantly, three turbulence generators were employed to

produce external disturbances in the flow. They were a

pipe, a short series of grids (referred to as short-grid),

and a long series of grids (referred to as long-grid). Both
Table 1

Summary of experimental data

Run Q (l/s) V (cm/s) x (or e) (cm) sm

(i) Pipe case

n2511 11.1 18.49 0 3

n2504 18.7 31.23 10 3

n2614 16.0 26.66 15 2

n2402 15.0 24.94 20 3

n2110 15.3 25.51 30 3

n2602 15.1 25.23 40 3

n2604 16.0 26.66 50 2

n2606 17.4 28.94 60 3

n2608 18.0 30.08 70 3

n2609 18.5 30.77 80 2

(ii) Short-grid case

n2105 5.7 9.52 0 3

n2103 5.6 9.41 10 3

n2102 5.5 9.24 20 2

o0708 6.1 10.09 30 2

n2009 6.4 10.66 40 2

o0301 6.1 10.09 50 2

o0304 6.6 10.95 60 3

o0701 7.8 12.95 70 3

n2006 9.0 14.95 80 2

n2706 10.1 16.80 90 2

n2708 11.7 19.52 110 2

n2710 13.9 23.23 135 2

n2802 15.1 25.23 168 2

(iii) Long-grid case

n2002 4.2 7.00 2 2

n1903 5.0 8.33 4 3

o0803 6.2 10.33 6 3

o0804 7.4 12.33 8 3

o1509 8.5 14.17 10 3

o1303 10.0 16.66 12 3

o1305 11.5 19.23 14 3

o1502 12.6 20.94 16 2

o1506 15.1 25.23 18 2

s3001 18.4 30.67 20 3
pipe and grid were considered to be typical structures

for shedding eddies. Such eddies, when moving down-

stream, would serve as external turbulence with various

scales to affect the bed shear stress measured by the
hotfilm probe. Different arrangements were made for the

three generators, as shown in Figs. 1–3, respectively.

Altogether four series of experiments were conducted in

this study.

Series 1: Undisturbed flow. The purpose of this series

of experiments was to provide data for the flows without

the turbulence generators for comparisons with the

other cases. For this case, the velocity profiles were
measured using a 1-D laser-Doppler anemometer (LDA)

manufactured by Dantec, which was operated in for-

ward scatter mode. The measured velocity profile for the

undisturbed flow compares well with the van Driest

(1956) function and also the logarithmic law for the

large distance from the bed. However, the bed shear

stress obtained by fitting the limited velocity data to the
ean=q (cm2/s2) srms=smean ðln snÞmean ðln snÞrms

.002 0.212 )0.022 0.209

.025 1.015 )0.500 1.072

.998 0.802 )0.328 0.879

.054 0.660 )0.199 0.649

.023 0.637 )0.173 0.589

.031 0.591 )0.159 0.575

.969 0.592 )0.154 0.562

.038 0.589 )0.155 0.562

.004 0.541 )0.126 0.501

.963 0.560 )0.131 0.508

.008 0.481 )0.105 0.463

.039 0.491 )0.119 0.505

.994 0.478 )0.107 0.469

.990 0.460 )0.105 0.471

.961 0.487 )0.114 0.488

.988 0.473 )0.109 0.477

.023 0.527 )0.134 0.532

.038 0.528 )0.135 0.534

.969 0.553 )0.152 0.576

.981 0.573 )0.162 0.593

.971 0.571 )0.156 0.577

.975 0.560 )0.154 0.573

.989 0.549 )0.139 0.537

.985 0.354 )0.062 0.359

.069 0.442 )0.100 0.463

.036 0.492 )0.115 0.490

.077 0.519 )0.126 0.513

.000 0.542 )0.139 0.545

.037 0.511 )0.122 0.504

.016 0.484 )0.108 0.466

.997 0.455 )0.098 0.445

.964 0.466 )0.099 0.445

.025 0.442 )0.090 0.424
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Fig. 4. Variations of relative intensity of bed shear stress, and mean
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log-law is lower than the hotfilm measurement by ap-

proximately 5–10%.

Series 2: Pipe case. For this series, a 30 cm long pipe

with a diameter of 6.3 cm was horizontally installed

between the side walls of the flume, as shown in Fig. 1.

The spacing of the pipe above the bed remained at 6 cm.

The longitudinal distance from the section where the

pipe located to the test section varied from 0 to 80 cm.
Series 3: Short-grid case. Fig. 2 shows the short-grid,

95 cm long, 29 cm wide and 21 cm high, which was

positioned at 6 cm above the bed. The short-grid con-

sisted of 19 pieces of stainless steel perforated plates,

which were spaced out 5 cm apart. Each plate was 2 mm
thick, having uniformly-distributed square holes (9.5

mm · 9.5 mm). The average porosity for each plate was

69%. The distance from the downstream end of the grid

to the test section varied from 0 to 170 cm.
Series 4: Long-grid case. It comprised 10 sections of

short-grids, covering the flume in the whole length, as

shown in Fig. 3. The clearance between the bed of the

flume and the lower edge of the grid ranged from 2 to 20

cm.

It is noted that the four series of experiments con-

ducted in this study were all limited to unidirectional

flows, and therefore do not represent other bed shear
stress problems.
3. Data analysis

A summary of the experimental results for all the

tests is given in Table 1, where the subscripts rms and

mean denote the root-mean-square and time-mean val-
ues of random variables, respectively; the ratio of srms to

smean is referred to as the relative intensity of the bed

shear stress; sn is the normalised stress defined as

s=smean, and q is the density of the fluid.

3.1. Variations of shear stress fluctuations

Figs. 4–6 show variations of the bed shear stress
fluctuations for the three cases, respectively. Large

variations are found for the pipe case, where the relative

intensity of the shear stress, srms=smean, varies from 0.21

to 1.02. In comparison, the relative intensity is 0.44 for

the undisturbed flow, and varies from 0.46 to 0.57 for

the long-grid case and from 0.35 to 0.54 for the short-

grid case. The difference of the measured fluctuations

would reflect the variations in the scale of the generated
turbulence. In the near field downstream of the struc-

ture, the turbulence scale should be closely related to the
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dimension of the structure. For the pipe case, the
shedding eddies would be larger in size because the pipe

diameter is 63 mm, which is much larger than the bar

size (2 mm) of the grids. This further implies that the

observed stress fluctuation that is more substantial in

the presence of the pipe, in particular, when the pipe is

not far away from the test section.

In addition, it is noted that the measured relative

intensity for the undisturbed flow is slightly higher than
the range reported previously, the latter being 0.35–0.40

(e.g., Alfredsson et al., 1988; Naqwi and Reynolds,

1991). No clear explanation for this difference can be

made at this stage.

3.2. Probability density distribution

For a unidirectional flow over a hydraulically smooth
bed, two basic characteristics of the bed shear stress can

be observed from the experiment results. First, the bed
shear stress is always positive, implying that no flow

reversals occur very near the bed. Second, the distribu-

tion of the fluctuating bed shear stress is positively

skewed. Cheng and Law (2003) have shown that the
skewed distribution can be reproduced with the two-

parameter lognormal function, which agrees well with

the measured results for the uniform channel flows and

boundary layers.

With the lognormal function, the probability density

function of the bed shear stress s can be expressed as

f ðsÞ ¼

1ffiffiffiffiffiffi
2p

p
ðln sÞrmss

exp � 1

2

ln s� ðln sÞmean

ðln sÞrms

� �2
( )

for s > 0

0 for s6 0

8>>><
>>>:

ð1Þ
where ðln sÞmean ¼ mean value of the random variable
ln s and ðln sÞrms ¼ rms value of ln s. The two parame-

ters, ðln sÞmean and ðln sÞrms, indicate the statistical

characteristics of the logarithm of the bed shear stress.

Their variations for the three cases of the experiments

are shown in Figs. 4–6. It is interesting to note that the

two parameters vary in the similar fashion to that for the

stress fluctuation. In particular, the magnitude of

ðln sÞrms is almost equal to the relative intensity of the
shear stress for all the cases, of which more discussions

are given subsequently.

Theoretically, ðln sÞmean and ðln sÞrms can be related to

smean and srms, as detailed in Appendix A. Such rela-

tionships can also be expressed in terms of the norma-

lised shear stress, sn ¼ s=smean, as follows

ðln snÞmean ¼ � 1

2
ln 1
h

þ ðsnÞ2rms

i
ð2Þ

ðln snÞrms ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ln 1þ ðsnÞ2rms

h ir
ð3Þ

where ðsnÞrms ¼ srms=smean ¼ relative intensity of the bed

shear stress denoted as Is. With Eqs. (2) and (3), Eq. (1)

can be rewritten as

f ðsnÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2p 1þ I2s
� �q

sn
exp

"
�

ln sn þ ln
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ I2s

p� �2
2 ln 1þ I2s

� �
#

ð4Þ
for sn > 0. Eq. (4) indicates that the probability density

function of the normalised stress varies with the fluctu-

ating intensity.

Figs. 7–9 show comparisons of Eq. (4) with the ex-

perimental results for the cases of pipe, short-grid, and

long-grid, respectively. It can be seen that the measured

probability density functions generally agree well with the
lognormal function for various fluctuating intensities.

Figs. 10 and 11 show the relationship of the mean and

rms values of the normalised shear stress and those of its
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logarithm, lnðsnÞ, respectively. The theoretical results

are computed using Eqs. (2) and (3), respectively. It is
interesting to note that the measurements can largely be

represented by Eqs. (2) and (3), respectively. However,
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for the pipe case, the experimental data seem to agree

better with the following approximate equations:

ðln snÞmean ¼ � 1

2
ðsnÞ2rms ð5Þ

ðln snÞrms ¼ ðsnÞrms ð6Þ

Eqs. (5) and (6) are derived from Eqs. (2) and (3) for
small stress fluctuations by considering the following

series expansions:

ln 1
h

þ ðsnÞ2rms

i
¼ ðsnÞ2rms � 0:25ðsnÞ4rms þO½ðsnÞ6rms� ð7Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ln 1þ ðsnÞ2rms

h ir
¼ ðsnÞrms � 0:25ðsnÞ3rms þO½ðsnÞ5rms�

ð8Þ
Obviously, if the terms including ðsnÞ3rms and higher or-

ders can be ignored, then Eqs. (2) and (3) can be sim-

plified to Eqs. (5) and (6), respectively.

3.3. High-order moments: skewness and kurtosis

The skewness S and kurtosis K are defined, respec-

tively, as

S ¼ s� smeanð Þ3

s� smeanð Þ2
h i1:5 ð9Þ

K ¼ s� smeanð Þ4

s� smeanð Þ2
h i2 ð10Þ

where the overbars denote the time-average.

With the lognormal function, the above definitions of

the skewness and kurtosis can be further expressed in

terms of Is (Crow and Shimizu, 1988):

S ¼ I3s þ 3Is ð11Þ

K ¼ I8s þ 6I6s þ 15I4s þ 16I2s þ 3 ð12Þ

From Eqs. (11) and (12), it can be seen that for small Is-
values, the skewness is approximately equal to zero and

the kurtosis 3, implying that the distribution of the

fluctuating bed shear stress can be described using the

Gaussian function. Comparisons of Eqs. (11) and (12)

with the experimental results are given in Figs. 12 and

13, respectively, showing general overestimates with

Eqs. (11) and (12) despite the scatter of the measure-

ments. This may be partially due to the fact that the
high-order moments of the bed shear stress are usually

believed to be significantly subject to the heat loss for

the hot-element sensors or insufficient seeding particles
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very close to the bed for the LDA (Wietrzak and Lu-

eptow, 1994; Chew et al., 1998). On the other hand, it is

also noted that some significant deviations of the mea-

sured skewness and flatness from the predication exist

for the pipe case. In particular, the deviations are as-

sociated with the pipe which was only 10 and 15 cm

upstream of the test section. Therefore, they may result
from the direct impact of the eddy shedding from the

pipe. Unfortunately, for this particular case, there are

only the two data points available from this study.

Therefore, further studies are needed so that detailed

examination can be made.

In addition, the relationship of S and K is plotted

with Eqs. (11) and (12) in Fig. 14 together with the ex-

perimental data. Also superimposed in this figure is the
following simplified relationship:

K ¼ 16

9
S2 þ 3 ð13Þ
3

4

5

6

7

8

9

10

11

12

13

0 0.5 1 1.5 2 2.5
S

K

Pipe
Short grid
Long grid
Eqs. (11) and (12)
Eq. (13)

Fig. 14. Relationship of skewness and kurtosis.
which is derived by ignoring the terms included in Eqs.

(11) and (12) of which the orders are higher than OðI2s Þ.
Fig. 14 shows that the two theoretical curves are in good

agreement with the experimental results.
4. Discussion

From the experimental results obtained in this study,

it appears that the probability density distribution of the

bed shear stress becomes more skewed when the bed is

subjected to external larger-scale turbulence. This phe-
nomenon is evident for the pipe case, in particular, when

the pipe is in close proximity of the hotfilm probe or the

test section. This is largely because the eddy shed from

the pipe in size is of the order of the pipe diameter that is

63 mm. When the pipe is not far from the hotfilm probe,

the effect of the eddy shedding is expected more con-

siderable. In contrast, the size of the eddy generated by

the grid appears much smaller because the grid bar has a
dimension of 2 mm only.

Also demonstrated by the measurements is the fact

that the probability density distribution becomes less

skewed if the distance from the structure (pipe or grid)

to the channel bed at the test section increases. This is

because with the increasing distance, the large scale eddy

reduces in size when approaching the bed at the test

section.
On the other hand, it should be noted that the mea-

sured probability density distribution may also be sub-

jected to the performance of the hotfilm probe. As

mentioned earlier by Alfredsson et al. (1988), the heat

transfer from the probe to substrate may be insensitive

to rapid shear stress fluctuations because of the large

thermal inertia of the substrate. Therefore, the measured

probability density distribution may deviate from the
real distribution due to the difference between static and

dynamic responses of the hotfilm probe.
5. Conclusions

In this study, various external structures are super-

imposed in open channel flows to generate additional
turbulence. This causes that the bed shear stress fluctu-

ates markedly in comparison with those for the condi-

tion of uniform channel flows or boundary layers. The

shear stresses were measured with a 1-D hotfilm probe.

The statistical analysis of the measurements shows that

the probability density distribution of the fluctuating

stress can be described effectively using the lognormal

function. The skewness and kurtosis generally depend
on the relative intensity of the shear stress, and thus are

interrelated. The interrelationship that is derived from

the lognormal function agrees well with the experimen-

tal data.
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Appendix A. Derivation of Eq. (4)

In terms of the probability density function f ðsÞ,
smean can be computed as

smean ¼
Z 1

�1
sf ðsÞds ðA:1Þ

and srms can be defined according to

s2rms ¼
Z 1

�1
s2f ðsÞds� s2mean ðA:2Þ

Substituting Eq. (1) into Eqs. (A.1) and (A.2), respec-

tively, yields

smean ¼ exp ðln sÞmean

�
þ 1

2
ðln sÞ2rms

�
ðA:3Þ

and

srms ¼ smean

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
exp ln sð Þ2rms

h i
� 1

r
ðA:4Þ

From Eq. (A.4), one gets

ðln sÞrms ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ln 1þ I2s
� �q

ðA:5Þ

Then, substituting Eq. (A.5) into Eq. (A.3) yields

ðln sÞmean ¼ ln
smeanffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ I2s

p
 !

ðA:6Þ

With Eqs. (A.5) and (A.6), Eq. (1) can be rewritten as

f ðsÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2p 1þ I2s
� �q

s
exp

2
64�

ln s
smean

þ ln
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ I2s

p� 	2
2 ln 1þ I2s

� �
3
75

ðA:7Þ
for s > 0. In terms of the normalised stress, Eqs. (A.5)–
(A.7) can be changed to Eqs. (2)–(4), respectively.
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